已知2次函数y=ax^2+bx+c的图像经过点(-1,0),问是否存在常数a,b,c,使于不等式x小于等Y小于等于1/2(1+x^2)对一切x属于实数都陈立
问题描述:
已知2次函数y=ax^2+bx+c的图像经过点(-1,0),问是否存在常数a,b,c,使于不等式x小于等Y小于等于1/2(1+x^2)对一切x属于实数都陈立
答
x≤ax^+bx+c≤1/2×(1+x^2)
对于一切实数成立,分开写
(a-1/2)x^2+bx+(c-1/2)≤0.(1)
ax^2+(b-1)+c≥0.(2)
要求对一切实数等成立,那么对于(1)得到:
a-1/20,Δ≤0
y=ax^2+bx+c,
过点(-1,0)
a-b+c=0
0