如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度数.
问题描述:
如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠ACB=∠AED=105°,∠CAD=10°,∠B=∠D=25°,求∠DFB、∠DGB的度数.
答
∵∠ACB=105°,∠B=25°,
∴∠BAC=180°-∠ACB-∠B=180°-105°-25°=50°,
∵∠CAD=10°,
∴∠BAF=∠BAC+∠CAD=50°+10°=60°,
在△ABF中,∠DFB=∠B+∠BAF=25°+60°=85°;
∵∠D=25°,
∴在△DGF中,∠DGB=∠DFB-∠D=85°-25°=60°.
答案解析:根据三角形的内角和定理求出∠BAC,再求出∠BAF,然后根据三角形的一个外角等于与它不相邻的两个内角的和分别求解即可.
考试点:全等三角形的性质;三角形内角和定理;三角形的外角性质.
知识点:本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.