如图,在Rt三角形ABC中,∠C=Rt∠,点D为AB边上的中线,DE⊥BC于点E,DF⊥AC于点F,连接EF,求证:AB=2EF

问题描述:

如图,在Rt三角形ABC中,∠C=Rt∠,点D为AB边上的中线,DE⊥BC于点E,DF⊥AC于点F,连接EF,求证:AB=2EF

因为AF垂直于FD,AC垂直于CB,角A=角A且AD=DB所以三角形AFD相似于三角形ACB,且AD=DB,AF=FC因为角DEB=角C=90度,角B=角B,AD=DB所以三角形DBE相似于三角形BAC,BE=CE因为AF=FC,CE=EB所以三角形CFE相似于三角形CAB,CF=AF,CE...