数学题:设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a≠-b时,都有( f(a)+f(b) )/(a+b)<0.1﹚判断f(x)在R上的单调性,并用定义证明你的结论;2﹚如果对于任意的x∈[0,㏑2],不等式f(e^2x-2e^x)+f(4-ke^x)≧0恒成立,试求常数k的最小值.
问题描述:
数学题:设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a≠-b时,都有( f(a)+f(b) )/(a+b)<0.
1﹚判断f(x)在R上的单调性,并用定义证明你的结论;
2﹚如果对于任意的x∈[0,㏑2],不等式f(e^2x-2e^x)+f(4-ke^x)≧0恒成立,试求常数k的最小值.
答