已知数列﹛an﹜是公差为2,首项a1=1的等差数列,求数列﹛2^an﹜的前n项和sn
问题描述:
已知数列﹛an﹜是公差为2,首项a1=1的等差数列,求数列﹛2^an﹜的前n项和sn
答
an=1+2n
sn=2^1+2^3+2^5+.....+2^(2n-1)+2^(2n+1)....1
sn*2^2=2^3+2^5+.....+2^(2n+1)+2^(2n+3).....2
2式-1式=2^(2n+3)-2^1
3sn=2^(2n+3)-2
sn=2^(2n+3)/3 -2/3
答
a(n+1)-an=2
2^a(n-1)÷2^an
=2^[a(n+1)-an]
=2²
=4
所以是等比数列,q=4
2^a1=2
所以Sn=2*(1-4^n)/(1-4)=2(4^n-1)/3