求证:连接三角形内切圆切点的三角形的面积与原三角形面积之比等于原三角形内切圆半径与外接圆直径之比
问题描述:
求证:连接三角形内切圆切点的三角形的面积与原三角形面积之比等于原三角形内切圆半径与外接圆直径之比
答
多福多寿vcd
答
已知:标记外△ABC,△ABC外接圆直径为D.△ABC内接圆圆心为O,半径为r.圆O与AB、BC、AC的切点分别为D、E、F.连接OD、OE、OF、DE、EF、FD,则△DEF为圆O内接三角形.△ABC面积为S1,△DEF面积为S2,AB长度为c,BC长度为a,AC...