已知向量m=(cosθ,-sinθ),n=(√2+sinθ,cosθ),θ∈(π,3π/2),且cos(θ/2+π/8),求绝对值m+n的值.且cos(θ/2+π/8)=-4/5,求绝对值m+n的值
问题描述:
已知向量m=(cosθ,-sinθ),n=(√2+sinθ,cosθ),θ∈(π,3π/2),且cos(θ/2+π/8),求绝对值m+n的值.
且cos(θ/2+π/8)=-4/5,求绝对值m+n的值
答
|m+n|^2=m^2+n^2+2m*n=1+2-2√2sinθ+1+2√2sinθcosθ
=4-4sin(θ-45度)
45度-√2/2所以得到|M+N|^2|M+N|绝对就是小于等于√(4+2√2)咯
(2)由(1),则4-4sin(θ-45度)=(4√10/5)^2
所以sin(θ-45度)=-3/5
sin2θ=cos[90度-2θ]=cos[2(θ-45度)]=1-2sin(θ-45度)^2=7/25
希望有所帮助咯。~
答
mn=cosθ(√2+sinθ)-sinθcosθ
n^2=(√2+sinθ)^2+(cosθ)^2=3+2√2sinθ
|m+n|^2=(m+n)^2=m^2+2mn+n^2
=1+2【cosθ(√2+sinθ)-sinθcosθ】+(3+2√2sinθ)
=4+2√2(cosθ+sinθ)
=4+4sin(θ+π/4)
cos(θ/2+π/8)=-4/5,两边平方,得cos^2 (θ/2+π/8)=16/25
得1/2【cos(θ+π/4)+1】=16/25
得cos(θ+π/4)=7/25
θ∈(π,3π/2),则θ+π/4∈(5π/4,7π/4),
所以sin(θ+π/4)=-24/25
所以|m+n|=2/5