若直线y=kx+1(k∈R)与焦点在x轴上的椭圆x^2/5+y^2/t=1恒有公共点,则t的取值范围——

问题描述:

若直线y=kx+1(k∈R)与焦点在x轴上的椭圆x^2/5+y^2/t=1恒有公共点,则t的取值范围——

(0,1)应该在椭圆之中。1≤t<5

a1377051 正解 1≤t<5

1:焦点在X上,说明t<5
2:联立2个方程,消掉y,这是就有一个含t的关于X的二元一次方程组,因为是恒有公共点,所以△=b^2-4ab ≥0 求出t的范围
3:综合1,2可得1≤t<5