答
(1)(4-t,);
(2)S=-t2+t(0<t<4);
(3)由(2)知:S=-t2+t=-(t-2)2+,
因此当t=2时,Smax=;
(4)由(3)知,当S有最大值时,t=2,此时N在BC的中点处,如图,
设Q(0,y),
∵△AOQ是直角三角形,
∴AQ2=16+y2,QN2=4+(3-y)2,AN2=13,
∵△QAN为等腰三角形,
①若AQ=AN,此时方程无解,
②若AQ=QN,解得y=−,
③若QN=AN,解得y1=0,y2=6,
∴Q1(0,−),Q2(0,0),Q3(0,6),
当Q为(0,−),直线AQ的解析式为y=−,
当Q为(0,0)时,A(4,0)、Q(0,0)均在x轴上,
直线AQ的解析式为y=0(或直线为x轴),
当Q为(0,6)时,Q、N、A在同一直线上,△ANQ不存在,舍去,
故直线AQ的解析式为y=−或y=0.
答案解析:(1)可在直角三角形CPN中,根据CP的长和∠BPA的三角函数值求出CN、PN的长,即可表示出P点的坐标;
(2)三角形MPA中,MA的长易得出,MA上的高就是P点的纵坐标,由此可得出S,t的函数关系式;
(3)根据(2)的函数关系可得出S的最大值,及对应的t的值;
(4)本题要分三种情况进行讨论:①QN=NA;②AQ=AN;③QN=AQ;可设Q点的坐标,然后表示出NQ、NA、QA的长,根据上述三种情况中不同的等量关系可求出不同的Q点坐标,然后用待定系数法即可求出直线AQ的解析式.
考试点:二次函数综合题.
知识点:本题考查了矩形的性质、等腰三角形的判定、图形面积的求法及二次函数的应用等知识.要注意(4)题在不确定等腰三角形的腰和底的情况下,要分类讨论,不要漏解.