求函数y=1/sin²α+2/cos²α的最小值能有三种方法更好
问题描述:
求函数y=1/sin²α+2/cos²α的最小值
能有三种方法更好
答
方法一:
依权方和不等式得
y=1/sin²α+2/cos²α
=1²/sin²α+(√2)²/cos²α
≥(1+√2)²/(sin²α+cos²α)
=3+2√2.
∴y|min=3+2√2.
方法二:
依柯西不等式得
(sin²α+cos²α)(1/sin²α+2/cos²α)≥(1+√2)²
→1/sin²α+2/cos²α≥3+2√2.
∴y|min=3+2√2.
方法三:
用基本不等式
设a=sin²α,b=cos²α,则a+b=1.
∴y=(1/a+2/b)·1
=(a+b)(1/a+2/b)
=3+(2a/b+b/a)
≥3+2√[(2a/b)·(b/a)]
=3+2√2.
∴y|min=3+2√2.