已知函数f(x)=sin(x+θ)+sin(x-θ)-2sinθ x=R时f(x)大于等于0 θ属于(0,3/2π)且tan2θ=-3/4求cosθ追分
问题描述:
已知函数f(x)=sin(x+θ)+sin(x-θ)-2sinθ x=R时f(x)大于等于0 θ属于(0,3/2π)且tan2θ=-3/4
求cosθ
追分
答
篇》
答
f(x)=sin(x+θ)+sin(x-θ)-2sinθ =2sinxcosθ-2sinθ
x=R时f(x)大于等于0 可得2cosθ-2sinθ>=0 -2cosθ-2sinθ>=0
θ属于(0,3/2π),可缩小范围(5π/4,3π/2)在第三象限
tan2θ=-3/4 =>cos2θ=-4/5=2cosθ^2-1
cosθ=-√10/10
答
f(x)=sin(x+θ)+sin(x-θ)-2sinθ =2[sin(x+θ+x-θ)/2*cos(x+θ-x+θ)/2]-2sinθ =2sinx*cosθ-2sinθ=√(4sin^2x+4)cos(α+θ)≥0θ∈(0,π/2)tan2θ=-3/42θ∈(π/2,π)sin2θ=-3/4cos2...