1/(n+1)+1/(n+2)+……+1/(3n+1)>a/24对一切正整数n都成立,求自然数a的最大值,并证明你的结论

问题描述:

1/(n+1)+1/(n+2)+……+1/(3n+1)>a/24对一切正整数n都成立,求自然数a的最大值,并证明你的结论

设 bn = 1/(n+1)+1/(n+2)+……+1/(3n+1)
那么 由于1/(3n+1)+1/(3n+2)+1/(3n+3)>1/(n+1)
可知 bn 是递增的
所以 只要求 b1 = 1/2 + 1/3 + 1/4 = 26/24
所以 a 最大时 = 25