分解因式:(a-b)(x-y)-(b-a)(x+y)

问题描述:

分解因式:(a-b)(x-y)-(b-a)(x+y)

=(a-b)(x-y)+(a-b)(x+y)
=(a-b)(2x)

解:(a-b)(x-y)-(b-a)(x+y)
=a(x-y)-b(x-y)-b(x+y)-a(x+y)
=ax-ay-bx+by-bx-by-ax-ay
=a(x-y-x-y)-b(x-y+x+y)
=-2ay-2bx
=-2(ay+bx)

2x(a-b)

(a-b)(x-y)-(b-a)(x+y)
=(a-b)(x-y)+(a-b)(x+y)
=(a-b)(x-y+x+y)
=(a-b)(2x)
=2x(a-b)

(a-b)(x-y)-(b-a)(x+y)
=(a-b)(x-y)+(a-b)(x+y)
[提取公因式]
=(a-b)(x-y+x+y)
=2x(a-b)

=(a-b)(x-y+x=y)
=(a-b)2x
=2ax-2bx