已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4求{an}的通项公式及
问题描述:
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an^2+n-4求{an}的通项公式及
答
设:an=a*n+b
2sn=(a1+an)*n
=(a*n+b+a+b)*n
=a*n^2+(a+2b)n
所以a*n^2+(a+2b)n=an^2+n-4
an^2=a*n^2+(a+2b-1)n+4
有a1=a+b得a=1,b=2
所以an=n+2
答
因为2Sn=an^2+n-4,所以2S(n-1)=a(n-1)²+n-1-4.两式相减2an=an^2-a(n-1)²+1,a(n-1)²=an^2-2an+1=(an-1)²因为各项都是正数,所以a (n-1)=a n - 1.令n=1,2a1=a1²+1-4,a1=3.所以{an...