若a>2,则函数f(x)=13x3-ax2+1在区间(0,2)上恰好有( )A. 0个零点B. 1个零点C. 2个零点D. 3个零点
问题描述:
若a>2,则函数f(x)=
x3-ax2+1在区间(0,2)上恰好有( )1 3
A. 0个零点
B. 1个零点
C. 2个零点
D. 3个零点
答
由已知得:f′(x)=x(x-2a),由于a>2,
故当0<x<2时f′(x)<0,
即函数为区间(0,2)上的单调递减函数,
又当a>2时
f(0)f(2)=
-4a<0,11 3
故据二分法及单调性可知函数在区间(0,2)上有且只有一个零点.
故选B
答案解析:先根据导数判断出函数f(x)在区间[0,2]上单调递减,再由f(0)f(2)<0可知有唯一零点.
考试点:函数零点的判定定理.
知识点:本题主要考查函数零点的判断定理.解答本题要结合函数的单调性判断.