如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.

问题描述:

如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.

DE=CD,BE=BC=7cm,
∴AE=AB-BE=3cm,
∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.
答案解析:由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB-BE=AB-BC,则△AED的周长为AD+DE+AE=AC+AE.
考试点:翻折变换(折叠问题).
知识点:本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.