直线x/2=y/1=z-1/-1绕直线x/1=y/-1=z-1/2旋转 所得到的旋转曲面(圆锥面)方程
问题描述:
直线x/2=y/1=z-1/-1绕直线x/1=y/-1=z-1/2旋转 所得到的旋转曲面(圆锥面)方程
答
l1:x/2=y/1=(z-1)/(-1)与l2:x/1=y/(-1)=(z-1)/2相交于点A(0,0,1),l1的方向向量m=(2,1,-1),l2的方向向量n=(1,-1,2),|m|=|n|=√6,设P(x,y,z)是所得到的旋转曲面上的任意一点,则cos=cos,∴(x-y+2z-2)/√{6[x^+y^+(z-1)...