1/1×4+1/4×7+1/7×10+…+1/13×16简便运算
问题描述:
1/1×4+1/4×7+1/7×10+…+1/13×16简便运算
答
因为3/[(k+3)]=1/k-1/(k+3)
所以 1/1×4+1/4×7+1/7×10+…+1/13×16=1/3*[(1-1/4)+(1/4-1/7)+(1/7-1/11)+…+(1/13+1/16)]=1/3*(1-1/16)=5/16
答
1/1×4+1/4×7+1/7×10+…+1/13×16
=1/3(1-1/4)+1/3(1/4-1/7)+1/3(1/7-1/10)...+1/3(1/13-1/16)
=1/3(1-1/16)
=5/16