设函数z=x2y2,其中x=sint,y=cost,求dz/dt2表示两次方
问题描述:
设函数z=x2y2,其中x=sint,y=cost,求dz/dt
2表示两次方
答
Z=(sint)^2(cost)^2
=1/4(sin2t)^2
=1/4*1/2(1-cos4t)
=1/8-1/8cos4t
dz/dt=1/8*4sin4t=1/2sin4t
答
z=x^2*y^2=(1/4)(sin2t)^2
dz/dt=(1/4)*2sin2t*cos2t*2
=(1/2)sin4t
答
本题属于复合函数的求导范畴!
详细过程如下:
dz/dt
=(x^2)'y^2+x^2(y^2)'
=2sint(cost)^3-(sint)^3*2cost
=2sintcost[(cost)^2-(sint)^2]
=sin2tcos2t
=(1/2)*sin4t