设函数f(x)=(3x+4)/(x^2+1,g(x)=6a^2/x+a a>1/3 若对任意x0∈[0,a]总存在相应的x1,x2∈[0,a],使得g(x
问题描述:
设函数f(x)=(3x+4)/(x^2+1,g(x)=6a^2/x+a a>1/3 若对任意x0∈[0,a]总存在相应的x1,x2∈[0,a],使得g(x
设函数f(x)=(3x+4)/(x^2+1),g(x)=(6a^2)/(x+a) a>1/3 若对任意x0∈[0,a]总存在相应的x1,x2∈[0,a],使得g(x1)《f(x0)《g(x2)成立 求实数a取值