y/x=ln(xy) 求详 dy/dx
问题描述:
y/x=ln(xy) 求详 dy/dx
答
方法一(微分法)
d(y/x)=d(ln(xy))
(xdy-ydx)/x²=1/xy *d(xy)
即(xdy-ydx)/x²=(ydx+xdy)/xy
∴dy/dx=(xy+y²)/(xy-x²)
方法二(求导法)
(y'x-y)/x²=1/xy *(y+xy')
∴y'=(xy+y²)/(yx-x²)