如图,AC⊥BC于点C,BC=a,CA=b,AB=c,⊙O与直线AB、BC、CA都相切,则⊙O的半径等于_.

问题描述:

如图,AC⊥BC于点C,BC=a,CA=b,AB=c,⊙O与直线AB、BC、CA都相切,则⊙O的半径等于______.

设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;
∵AC、BE是⊙O的切线,
∴∠ODC=∠OEC=∠DCE=90°;
∴四边形ODCE是矩形;
∵OD=OE,
∴矩形ODCE是正方形;
即OE=OD=CD;
设CD=CE=x,则AD=AF=b-x;
连接OB,OF,
由勾股定理得:BF2=OB2-OF2,BE2=OB2-OE2
∵OB=OB,OF=OE,
∴BF=BE,
则BA+AF=BC+CE,c+b-x=a+x,即x=

c+b−a
2

故⊙O的半径为
c+b−a
2