在三角形ABC中,BE.CF分别是AC,AB边上的高,在BE上截取BD=AC在CF的延长线上截取CG=AB,连接AD,AG,
问题描述:
在三角形ABC中,BE.CF分别是AC,AB边上的高,在BE上截取BD=AC在CF的延长线上截取CG=AB,连接AD,AG,
在CF的延长线上截取CG=AB,连接AD,AG,若AD=6cm,求AG的长
答
∵ BE,CF分别是AC,AB两边上的高
∴∠AFC=∠AEB=90°
又∵∠BAE=∠CAF (公共角)
∴∠ABE=∠ACF (同角的余角相等)
又∵ AB=GC BD=CA ( 已知)
∴△ABD≌△ACG (SAS)
∴ AG=AD=6cm