如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.

问题描述:

如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.

(1)求证:△ABD≌△GCA;
(2)请你确定△ADG的形状,并证明你的结论.

证明:(1)∵BE、CF分别是AC、AB两边上的高,∴∠AFC=∠AEB=90°(垂直定义),∴∠ACG=∠DBA(同角的余角相等),又∵BD=CA,AB=GC,∴△ABD≌△GCA;(2)连接DG,则△ADG是等腰直角三角形.证明如下:∵△ABD≌...
答案解析:(1)由于BE、CF分别是AC、AB两边上的高,那么可知∠AFC=∠AEB=90°,再利用等角的余角相等,可得∠ACG=∠DBA,再加上BD=CA,AB=GC,利用SAS可证△ABD≌△GCA;
(2)△ADG是等腰三角形,利用(1)中的全等,可得AG=AD,那么△ADG是等腰直角三角形.
考试点:全等三角形的判定.
知识点:本题利用了等角的余角相等、全等三角形的判定和性质、等腰三角形的判定,一定要熟练掌握这些知识并能灵活应用.