若实数x,y满足^2-2xy+y^2+x-y-6=0.则x-y的值为

问题描述:

若实数x,y满足^2-2xy+y^2+x-y-6=0.则x-y的值为

答:
实数x和y满足:
x^2-2xy+y^2+x-y-6=0
(x-y)^2+(x-y)-6=0 把x-y看做整体进行十字相乘法分解
(x-y+3)(x-y-2)=0
所以:
x-y=-3或者x-y=2