二元函数中,为什么存在连续的偏导,函数就在某点可微,而函数偏导存在只是可微的一个必要条件呢?

问题描述:

二元函数中,为什么存在连续的偏导,函数就在某点可微,而函数偏导存在只是可微的一个必要条件呢?

这个问题曾经也困扰我好久好久.现在说一下子我的理解.在一元函数中,具体到某一点,可导那么他在这个点的临域必连续,而根据可微的几何意义,只有这个点存在临域才可微(相信你看得这么深,肯定理解这句,单独一个点根本不...