已知数列{an}为等比数列.Tn=na1+(n-1)a2+…+an,且T1=1,T2=4 (1)求{an}的通项公式. (2)求{Tn}的通项公式.
问题描述:
已知数列{an}为等比数列.Tn=na1+(n-1)a2+…+an,且T1=1,T2=4
(1)求{an}的通项公式.
(2)求{Tn}的通项公式.
答
(1)设等比数列{an}的公比为q,则T1=a1,T2=2a1+a2=a1(2+q).
∵T1=1,T2=4,代入解得a1=1,q=2.
∴an=2n-1.
(2)设Sn=a1+a2+…+an,则Sn=1+2+…+2n-1=2n-1
∴Tn=na1+(n-1)a2+…+2an-1+an=a1+(a1+a2)+…+(a1+a2+…+an-1+an)
=S1+S2+…+Sn=(2-1)+(22-1)+…+(2n-1)
=(2+22+…+2n)-n=
-n=2n+1-n-22(1−2n) 1−2