x/1x2+x/2x3+x/3x4+.x/2010x2011=2010
问题描述:
x/1x2+x/2x3+x/3x4+.x/2010x2011=2010
答
1/1x2=1-1/2
1/2x3=1/2-1/3
以此类推
故原式左边=x(1-1/2+1/2-1/3+……+1/2010-1/2011)
=x(1-1/2011)
=(2010/2011)x
所以方程的解为x=2011