已知1^2+2^2+3^2+4^2+…+n^2=1/6n(n+1)(2n+1) 则2^2+4^2+6^2+100^2=

问题描述:

已知1^2+2^2+3^2+4^2+…+n^2=1/6n(n+1)(2n+1) 则2^2+4^2+6^2+100^2=

原式=(1*2)^2+(2*2)^2+(3*2)^2+(4*2)^2++…+(2*50)^2(提公因式+2^2)
=2^2*(1^2+2^2+3^2+4^2+…+50^2)
=2^2*[1/6*50*(50+1)(2*50+1)]=2^2*42925=171700

2^2+4^2+6^2+100^2= (1*2)^2+(2*2)^2+…+(50*2)^2=4*(1^2+2^2+…+50^2)=4*(1/6)*50*51*101
=171700