2^2+4^2+6^2+…+(2n)^2=2/3n(n+1)(2n+1).

问题描述:

2^2+4^2+6^2+…+(2n)^2=2/3n(n+1)(2n+1).

证明: (1)当n=1时,左边=4,右边=4,等式成立. (2)假设n=k时等式成立,即 2+4+6+…+(2k)=(2/3)k(k+1)(2k+1). 那么, 2+4+6+…+(2k)+[2(k+1)]=(2/3)k(k+1)(2k+1)+[2(k+1)] =(2/3)k(k+1)(2k+1)+4(k+1)(k+1) =2(k+1...