已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1 .求:已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1 .求:(1)求椭圆的方程;(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,IOPI=λ IOPI,求点M的轨迹方程,并说明轨迹是什么曲线.
问题描述:
已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1 .求:
已知椭圆C的中心为直角坐标系xOy的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是7和1 .
求:(1)求椭圆的方程;
(2)若P为椭圆C上的动点,M为过P且垂直于x轴的直线上的点,IOPI=λ IOPI,求点M的轨迹方程,并说明轨迹是什么曲线.
答
1)焦点在X轴,一个顶点到两个焦点的距离分别是7和1,则该顶点应在X轴,焦距=7-1=6,设焦点坐标F1(-c,0),F2(c,0),c=6/2=3,长半轴a=c+1=4,短半轴b=√(a^2-c^2)=√7,椭圆方程为:x^2/16+y^2/7=1.
(2).|OP|/|OM|=λ,设M(x,y),P(x,k),P点与M横坐标相等,k是纵坐标,|OP|=√(x^2+k^2),|OM|=√(x^2+y^2),P在椭圆上,x^2/16+k^2/7=1,
k=√112-7x^2)/4,x^2+(112-7x^2)/16=λ^2(x^2+y^2),点M的轨迹方程为:
x^2/(7(16λ^2-9)/16λ^2+y^2/7=1
当λ>3/4时,为椭圆,λ
答
你第二问有问题吧?IOPI=λ IOPI?不成立吧?应该是IOPI= λIOMI、且λ为椭圆离心率吧?如果是的话这道题应该是2009宁夏海南文卷的题、(Ⅰ)设椭圆长半轴长及分别为a,c,由已知得 a-c=1,a+c=7 解得a=4,c=3,...