数列{an}的通项公式an=n(n+1)/2,求数列{an}的前n项和Sn.注意:是求Sn,已知an
问题描述:
数列{an}的通项公式an=n(n+1)/2,求数列{an}的前n项和Sn.
注意:是求Sn,已知an
答
解 Sn=a1+a2+..+an
=1*2/2+2*2/2+....+n(n+1)/2
=(1+2+...+n)/2+(1^2+2^2+...+n^2)/2
=n(n+1)/4 +1/2n(n+1)(2n+1)/6
=n(n+1)(2n+1+3)/12
=n(n+1)(n+2)/6
答
an=n(n+1)/2=n²/2+n/2
所以Sn=1/2【(1²+2²+。。。。。。n²)+(1+2+。。。。。n)】
=1/2【n(n+1)(2n+1)/6+(n+1)n/2】
=1/2【n(n+1)(2n+4)/6】
=n(n+1)(n+2)/6
答
∵an=n(n+1)/2=n^2/2+n/2∴Sn=a1+a2+...+an =(1^2/2 +1/2)+(2^2/2+2/2)+...+(n^2/2+n/2) =1/2(1+2^2+...+n^2)+1/2(1+2+...+n) =1/2*1/6n(n+1)(2n+1)+1/2*n(n+1)/2 =n(n+1)/12*[(2n+1)+3] ...