已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)1.求数列{an }的通项公式2.若bn=n/an,求数列{bn }的前n项的和Sn.
问题描述:
已知:数列{an }满足a1+2a2+2^2·a3+``````+2^n-1·an=n/2(n属于正整数)
1.求数列{an }的通项公式
2.若bn=n/an,求数列{bn }的前n项的和Sn.
答
1、∵a1+2a2+...+2^(n-1)*an=n/2 ①a1+2a2+...+2^n*a(n+1)=(n+1)/2 ②②-①得2^n*a(n+1)=1/2,∴a(n+1)=1/(2^(n+1))∴an=1/2^n2、∴bn=n*2^nSn=1*2+2*2^2+……+n*2^n ③2Sn= 1*2^2+……+(n-1)*2^n+n...