设函数f(x)=log1/2(1-ax/x-1)为奇函数,a是常数.
问题描述:
设函数f(x)=log1/2(1-ax/x-1)为奇函数,a是常数.
(1)求a的值;
(2)证明f(x)在(1,+∞)内单调递增;
(3)若对[3,4]上的任意x值,不等式f(x)>(1/2)^x+m恒成立,求实数m的取值范围
答
f(-x)=log1/2(1+ax)/(-x-1)=-f(x)=-log1/2(1-ax)/(x-1)=log1/2(x-1)/(1-ax)
(1+ax)/(-x-1)=(x-1)/(1-ax)
1-x^2=1-a^2x^2
a^2=1
a=1或-1
若a=1
则f(x)=log1/2(1-x)/(x-1)=log1/2(-1)
无意义
所以a=-1
f(x)=log1/2(1+x)/(x-1)
(1+x)/(x-1)=(x-1+2)/(x-1)
=1+2/(x-1)
x>1时x-1递增
所以2/(x-1)递减
所以(1+x)/(x-1)是减函数
底数1/21时f(x)是增函数
移项可以得到:m