已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C求证:AF=DE
问题描述:
已知:如图,B、E、F、C四点在同一条直线上,AB=DC,BE=CF,∠B=∠C求证:AF=DE
答
证明:
因为BE=CF,
所以BE+EF=CF+EF,
即BF=CE
又∠B=∠C
AB=DC,
所以三角形ABF≌三角形DCE,
所以AF=DE(全等三角形对应边相等)