如图,平面直角坐标系中,O为坐标原点,直线y=-2x+b与x轴、y轴分别相交于A、B两点,OA=2
问题描述:
如图,平面直角坐标系中,O为坐标原点,直线y=-2x+b与x轴、y轴分别相交于A、B两点,OA=2
(1)求b的值(2)动点P从A出发,以每秒1个单位的速度沿x轴正方向运动,过点P作直线l与x轴垂直,连接BP,过O作OQ⊥BP,垂足为Q,M为OB的中点,连接MQ并延长交直线l于点N.当tan∠PBO=2时,P点停止运动.设P点运动时间为t,QN的长为y,求y与t的函数关系式(直接写出自变量t的取值范围)
(3)在(2)的条件下,P点在运动的过程中,连接AN,t为何值时,∠BOQ=∠ANP?此时在线段QN上是否存在点C,使得以C为圆心,√2/2为半径的⊙C与直线AN相切,求C的坐标
答
根据题目内容看,本题一定有图.而目前却无法猜测出直线Y=-2x+b与Y轴正半轴还是负半轴相交,因此很难给出一个固定的答案.在此仅以直线Y=-2X+b与Y轴正半轴相交求解了.(1)y=-2x+b与X正半轴交于A,OA=2,则A为(2,0).∴0=-4+b...