已知正项数列{an}的前n项和为Sn,a1=2/3,且满足2S(n+1)+2Sn=3(an+1)^2(n属于N*)

问题描述:

已知正项数列{an}的前n项和为Sn,a1=2/3,且满足2S(n+1)+2Sn=3(an+1)^2(n属于N*)
1,求数列{an}的通项公式an
2,求证;当n>=2时,1/(a2)^2+1/(a3)^2+.+1/(an)^2

(1)an=2n/3(递推一项,两式相减得an与an+1关系)
(2)即求n>=2时,∑1/n^2