已知函数f(x)对于任意的x,y∈R都满足f(x+y)=f(x)+f(y),且当x>0时f(x)>0恒成立 证明f(x)在R上单调递增
问题描述:
已知函数f(x)对于任意的x,y∈R都满足f(x+y)=f(x)+f(y),且当x>0时f(x)>0恒成立 证明f(x)在R上单调递增
答
由任意x.y€R,总有f(x)+f(y)=f(x+y)令x=y=0则f(0)+f(0)=f(0+0)即f(0)=0再令y=-x则得f(x)+f(-x)=f(x+(-x))=f(0)=0即f(-x)=-f(x).(*)设x1,x2属于R,且x1<x2则f(x2)-f(x1)=f(x2...