已知数列{an}满足a1=0,a2=1,an+2=3an+1-2an,则{an}的前n项和Sn=_.

问题描述:

已知数列{an}满足a1=0,a2=1,an+2=3an+1-2an,则{an}的前n项和Sn=______.

由a1=0,a2=1,an+2=3an+1-2an,可得an+2-an+1=2(an+1-an),∴数列{an+1-an}是以a2-a1=1为首项,2为公比的等比数列,∴an−an−1=2n−2(n≥2).∴an=(an-an-1)+(an-1-an)+…+(a2-a1)+a1=2n-2+2n-3+…+2+1...