f(X)=2asin²X-2√3asinxcosx+a+b,定义域[0,90°],值域[-5,1],求a,b的值
问题描述:
f(X)=2asin²X-2√3asinxcosx+a+b,定义域[0,90°],值域[-5,1],求a,b的值
答
f﹙x﹚=a﹙1-cos2x﹚-√3asin2x+a+b
=-a﹙√3sin2x+cos2x﹚+2a+b
=-2asin﹙2x+30°﹚+2a+b
0°≤x≤90° 30°≤2x+30°≤210°
-1/2≤sin﹙2x+30°﹚≤1
∴-1≤2sin﹙2x+30°﹚≤2
①当a>0时,f﹙x﹚∈[b,3a+b]
∴a=2,b=-5
②当a<0时,f﹙x﹚∈[3a+b,b]
∴a=-2,b=1