已知函数f(x)=3ax²+2bx+c,a+b+c=0,f(x)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实数.
问题描述:
已知函数f(x)=3ax²+2bx+c,a+b+c=0,f(x)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在[0,1]内有两个实数.
答
3ax^2+2bx+c=0
判别式=4b^2+12c
=4b^2+12(b+a)
=4b^2+12ab+12a^2
=3a^2+(3a+2b)^2>=0
所以f(x)=0有实根
f(0)f(1)>0
(3a+2b+c)c>0
(2a+b)c>0
(2a+b)(a+b)所以2a+b a+b异号
2a+b>0 a+b或2a+b0
无论哪个都得出.-2