P是三角形ABC的内心,AP交三角形的外接圆于D,E在AC的延长线上,且AD的平方=AB乘AE,求证DE是圆O的切线
问题描述:
P是三角形ABC的内心,AP交三角形的外接圆于D,E在AC的延长线上,且AD的平方=AB乘AE,求证DE是圆O的切线
答
证明:连接ODP为三角形ABC内切圆心,所以∠BAD=∠CAD弧BD=弧CD所以OD⊥BC在△ABD和△ADE中∠BAD=∠DAEAD²=AB×AE,即AB/AD=AD/AE所以△ABD∽△ADE,∠ADB=∠AED因为∠ADB和∠ACB所对都是AB弧,所以∠ADB=∠ACB因此...