(2014•永州三模)在△ABC中,sinA=513,cosB=35,则cosC=( ) A.-1665 B.-5665 C.±1665 D.±5665
问题描述:
(2014•永州三模)在△ABC中,sinA=
,cosB=5 13
,则cosC=( )3 5
A. -
16 65
B. -
56 65
C. ±
16 65
D. ±
56 65
答
∵B为三角形的内角,cosB=35>0,∴B为锐角,∴sinB=1−cos2B=45,又sinA=513,∴sinB>sinA,可得A为锐角,∴cosA=1−sin2A=1213,则cosC=cos[π-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB=-1213×35+513×45=-1665...