(2014•永州三模)在△ABC中,sinA=513,cosB=35,则cosC=(  ) A.-1665 B.-5665 C.±1665 D.±5665

问题描述:

(2014•永州三模)在△ABC中,sinA=

5
13
,cosB=
3
5
,则cosC=(  )
A. -
16
65

B. -
56
65

C. ±
16
65

D. ±
56
65

∵B为三角形的内角,cosB=35>0,∴B为锐角,∴sinB=1−cos2B=45,又sinA=513,∴sinB>sinA,可得A为锐角,∴cosA=1−sin2A=1213,则cosC=cos[π-(A+B)]=-cos(A+B)=-cosAcosB+sinAsinB=-1213×35+513×45=-1665...