已知道,如图,在⊙O中,弦AB,AC互相垂直且相等,OD⊥AO于D,OE⊥AC于E,求证四边形ADOE是正方形

问题描述:

已知道,如图,在⊙O中,弦AB,AC互相垂直且相等,OD⊥AO于D,OE⊥AC于E,求证四边形ADOE是正方形

AB,AC为互相垂直的两条弦,且OD⊥AB于D,OE⊥AC于E,
所以四边形ADOE是矩形,
又AB=AC,OD⊥AB,OE⊥AC,
所以AE=AD(垂径定理)
所以四边形ADOE是正方形.