已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且∠FCE=1/2∠BCD. (1)求证:BF=EF-ED; (2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.

问题描述:

已知梯形ABCD中,AD∥BC,AB=BC=DC,点E、F分别在AD、AB上,且∠FCE=

1
2
∠BCD.

(1)求证:BF=EF-ED;
(2)连接AC,若∠B=80°,∠DEC=70°,求∠ACF的度数.

(1)证明:旋转△BCF使BC与CD重合,
∵AD∥BC,AB=DC,即梯形ABCD为等腰梯形,
∴∠A=∠ADC,∠A+∠ABC=180°,
∴∠ADC+∠ABC=180°,
由旋转可知:∠ABC=∠CDF′,
∴∠ADC+∠CDF′=180°,即∠ADF′为平角,
∴A,D,F′共线,
∵FC=F′C,EC=EC,∠ECF'=∠BCF+∠DCE=∠ECF,
∴△FCE≌△F′CE,
∴EF′=EF=DF′+ED,
∴BF=EF-ED;

(2)∵AB=BC,∠B=80°,
∴∠ACB=50°,
由(1)得∠FEC=∠DEC=70°,
∴∠ECB=70°,
而∠B=∠BCD=80°,
∴∠DCE=10°,
∴∠BCF=30°,
∴∠ACF=∠BCA-∠BCF=20°.