Rt△ABC中,∠ACB=90,CD是斜边AB上的高,DE⊥AC,DF⊥BC 求证:BC三次方/AC三次方=BF/AE 求证:

问题描述:

Rt△ABC中,∠ACB=90,CD是斜边AB上的高,DE⊥AC,DF⊥BC 求证:BC三次方/AC三次方=BF/AE 求证:
CD三次方 =AE·BF·AB

证明:∵DE⊥AC于E∴Rt△ADE相似于Rt△ABC∴BC/AC=DE/AE(1)∵DF⊥BC于F∴Rt△DBF相似于Rt△ABC∴BC/AC=BF/DF(2)∵CD...第一小问会做TAT求第二问等我弄个图,稍等:∵∠A=∠BCD(均为角B的余角);∠AED=∠CDB=90度.∴⊿AED∽⊿CDB,CD/AE=BC/AD;-----------------------(1)同理相似可证:⊿ADC∽⊿DFB,CD/BF=AD/DF;--------(2)⊿CFD∽⊿ACB,CD/AB=DF/BC. -------------------------(3)∴(1)x(2)x(3),得:(CD/AE)x(CD/BF)x(CD/AB)=(BC/AD)x(AD/DF)x(DF/BC)=1.即:CD³/(AExBFxAB)=1, AExABxCD=CD³.图传不了,这个是过程