任意实数X1 、 X2 min{X1 、X2}表示X1、 X2中较小的那个数.
问题描述:
任意实数X1 、 X2 min{X1 、X2}表示X1、 X2中较小的那个数.
若f(n)=2-n² g(n)=n 则min{f(n)、g(n)}的最大值是多少
没怎么看明白啊
答
这个问题采用图解法比较直观:
首先在同一个坐标轴上作出函数f(n)=2-n² 与 g(n)=n ;
然后求交点坐标:
交点处的坐标通过解2-n² =n一元二次方程来求解,解得其坐标值为(-2,-2),(1,1);
从图像上 可以看出:
(1)当n1时,f(n)=2-n²图像始终在 g(n)=n图像的下方,故f(n)