经过双曲线x*2-y*2/3=1的右焦点F2作倾斜角为30°的直线,与双曲线交于A,B两点,求(1)AB长(2)△F1AB的周
问题描述:
经过双曲线x*2-y*2/3=1的右焦点F2作倾斜角为30°的直线,与双曲线交于A,B两点,求(1)AB长(2)△F1AB的周
(F1是双曲线的左焦点)
答
(1) 由x*2-y*2/3=1可知:a=1 b=√3 c=2 ∴F2(2,0)∵过F2的直线倾斜角为30°∴直线方程为:y=√3/3 (x-2)设两个交点分别为A(x1,y1) B(x2,y2)由直线方程和双曲线方程联立方程组:消去y得:8x^2+4x-13=0由距离公式:|AB...