点M在双曲线x^2/4-y^2/9=1上,F1,F2是双曲线的焦点,角F1MF2=90度,则三角形F1MF2的面积是什么?
问题描述:
点M在双曲线x^2/4-y^2/9=1上,F1,F2是双曲线的焦点,角F1MF2=90度,则三角形F1MF2的面积是什么?
答
可以用公式面积S=b²cotα/2=9cot45°=9.这个公式的证明如下:设∠F₁PF₂=α双曲线方程为x^2/a^2-y^2/b^2=1因为P在双曲线上,由定义|PF₁-PF₂|=2a在焦点三角形中,由余弦定理得F₁F...